Artwork

Вміст надано Real Python. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Real Python або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Detecting Outliers in Your Data With Python

1:07:17
 
Поширити
 

Manage episode 423562208 series 2637014
Вміст надано Real Python. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Real Python або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

How do you find the most interesting or suspicious points within your data? What libraries and techniques can you use to detect these anomalies with Python? This week on the show, we speak with author Brett Kennedy about his book “Outlier Detection in Python.”

Brett describes initially getting involved with detecting outliers in financial data. He discusses various applications and techniques in security, manufacturing, quality assurance, and fraud. We also dig into the concept of explainable AI and the differences between supervised and unsupervised learning.

This episode is sponsored by APILayer.

Course Spotlight: Using k-Nearest Neighbors (kNN) in Python

In this video course, you’ll learn all about the k-nearest neighbors (kNN) algorithm in Python, including how to implement kNN from scratch. Once you understand how kNN works, you’ll use scikit-learn to facilitate your coding process.

Topics:

  • 00:00:00 – Introduction
  • 00:01:56 – Describing the book
  • 00:03:22 – How did you get involved in outlier detection?
  • 00:06:50 – Initially looking at the data to spot errors
  • 00:08:22 – Amount of fraud and financial errors
  • 00:09:50 – Understanding the nature of the outliers
  • 00:12:15 – Industries that would be interested in detection
  • 00:18:21 – Sponsor: APILayer.com
  • 00:19:15 – Who is the intended audience for the book?
  • 00:22:16 – Differences between supervised vs unsupervised learning
  • 00:25:48 – Autonomous vehicles detecting anomalous imagery
  • 00:29:08 – What is explainable AI?
  • 00:36:21 – Video Course Spotlight
  • 00:37:43 – Detecting an outlier across multiple columns
  • 00:44:32 – Detection of LLM and bot activity
  • 00:49:49 – Proving you are a human checkbox
  • 00:52:25 – What are Python libraries for outlier detection?
  • 00:53:57 – Creating synthetic data to work through examples
  • 00:57:10 – Tools developed and described in the book
  • 01:01:29 – How to find the book
  • 01:02:27 – What are you excited about in the world of Python?
  • 01:04:55 – What do you want to learn next?
  • 01:05:52 – How can people follow your work online?
  • 01:06:16 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

278 епізодів

Artwork
iconПоширити
 
Manage episode 423562208 series 2637014
Вміст надано Real Python. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Real Python або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

How do you find the most interesting or suspicious points within your data? What libraries and techniques can you use to detect these anomalies with Python? This week on the show, we speak with author Brett Kennedy about his book “Outlier Detection in Python.”

Brett describes initially getting involved with detecting outliers in financial data. He discusses various applications and techniques in security, manufacturing, quality assurance, and fraud. We also dig into the concept of explainable AI and the differences between supervised and unsupervised learning.

This episode is sponsored by APILayer.

Course Spotlight: Using k-Nearest Neighbors (kNN) in Python

In this video course, you’ll learn all about the k-nearest neighbors (kNN) algorithm in Python, including how to implement kNN from scratch. Once you understand how kNN works, you’ll use scikit-learn to facilitate your coding process.

Topics:

  • 00:00:00 – Introduction
  • 00:01:56 – Describing the book
  • 00:03:22 – How did you get involved in outlier detection?
  • 00:06:50 – Initially looking at the data to spot errors
  • 00:08:22 – Amount of fraud and financial errors
  • 00:09:50 – Understanding the nature of the outliers
  • 00:12:15 – Industries that would be interested in detection
  • 00:18:21 – Sponsor: APILayer.com
  • 00:19:15 – Who is the intended audience for the book?
  • 00:22:16 – Differences between supervised vs unsupervised learning
  • 00:25:48 – Autonomous vehicles detecting anomalous imagery
  • 00:29:08 – What is explainable AI?
  • 00:36:21 – Video Course Spotlight
  • 00:37:43 – Detecting an outlier across multiple columns
  • 00:44:32 – Detection of LLM and bot activity
  • 00:49:49 – Proving you are a human checkbox
  • 00:52:25 – What are Python libraries for outlier detection?
  • 00:53:57 – Creating synthetic data to work through examples
  • 00:57:10 – Tools developed and described in the book
  • 01:01:29 – How to find the book
  • 01:02:27 – What are you excited about in the world of Python?
  • 01:04:55 – What do you want to learn next?
  • 01:05:52 – How can people follow your work online?
  • 01:06:16 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

278 епізодів

כל הפרקים

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити