Переходьте в офлайн за допомогою програми Player FM !
#30 Bayesian inference of chromatin structure from Hi-C data with Simeon Carstens
Manage episode 228173304 series 1537951
Hi-C is a sequencing-based assay that provides information about the 3-dimensional organization of the genome. In this episode, Simeon Carstens explains how he applied the Inferential Structure Determination (ISD) framework to build a 3D model of chromatin and fit that model to Hi-C data using Hamiltonian Monte Carlo and Gibbs sampling.
Links:
- Bayesian inference of chromatin structure ensembles from population Hi-C data (Simeon Carstens, Michael Nilges, Michael Habeck)
- Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data (Simeon Carstens, Michael Nilges, Michael Habeck)
If you enjoyed this episode, please consider supporting the podcast on Patreon.
70 епізодів
Manage episode 228173304 series 1537951
Hi-C is a sequencing-based assay that provides information about the 3-dimensional organization of the genome. In this episode, Simeon Carstens explains how he applied the Inferential Structure Determination (ISD) framework to build a 3D model of chromatin and fit that model to Hi-C data using Hamiltonian Monte Carlo and Gibbs sampling.
Links:
- Bayesian inference of chromatin structure ensembles from population Hi-C data (Simeon Carstens, Michael Nilges, Michael Habeck)
- Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data (Simeon Carstens, Michael Nilges, Michael Habeck)
If you enjoyed this episode, please consider supporting the podcast on Patreon.
70 епізодів
Tất cả các tập
×Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.