Artwork

Вміст надано Alloy.ai. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Alloy.ai або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Why Data Normalization Costs Consumer Brands Millions in Sales

48:33
 
Поширити
 

Manage episode 444567471 series 3514811
Вміст надано Alloy.ai. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Alloy.ai або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.


In this episode, we dive deep into the complexities of data management within the consumer goods industry, focusing on how brands can achieve a comprehensive view of their business by connecting data across a multitude of retail, e-commerce, and supply chain partners.

Hosted by Abby Carruthers, Product Manager at Alloy.ai, the discussion features insights from Manfred Reiche, a subject matter expert in CPG data, and Matthew Nyhus, engineering team lead at Alloy.ai. Together, they break down challenges and solutions related to data normalization—a crucial process for standardizing data from various sources to ensure consistency and comparability.

From understanding product and location data normalization to tackling the intricacies of time and metric alignment, this episode explores how brands can transform their disparate data into actionable insights that drive sales growth and operational efficiency.

In this episode, you’ll learn about:

  • Data normalization is critical for consumer brands to standardize data from various sources, such as retailers, e-commerce platforms, and supply chain partners, into a common language
  • Integrating and managing data from multiple sources involves significant technical and operational challenges, specialized systems can automatically manage these hurdles
  • Don’t shy away from the complexities of data normalization - seeking help and leveraging the expertise of others can save significant time and resources while ensuring accurate and actionable insights

Jump into the conversation:

(00:00) Introduction to Manfred and Matthew
(06:05) Using multiple retailers, integrate data sources for consumer insights
(09:55) Technology, people, and processes in master data management for product distribution
(14:47) Matching products from different sources for rich information visibility
(19:21) Consistency in managing changing product data
(21:59) Supply chain management with flexible, tailored database design
(25:24) How automation can reduce workload by 95% for all your teams
(29:45) Knowing servicing locations and translating insights for internal teams
(31:38) Distinguishing between brick-and-mortar and e-commerce sales
(34:17) Understanding net sales across channels, including returns and tax
(40:13) Backend stores metric values
(44:02) Retail data analysis pitfalls
(47:17) Being cautious with IT assumptions

  continue reading

Розділи

1. Why Data Normalization Costs Consumer Brands Millions in Sales (00:00:00)

2. Data Normalization in Consumer Goods (00:00:02)

3. Master Data Management Challenges in Sales (00:10:15)

4. Handling Complex Product Matching Scenarios (00:13:43)

5. Standardizing Data Across Multiple Sources (00:26:47)

6. Data Normalization Across Time (00:37:11)

7. Modeling Edge Cases in Data (00:48:08)

15 епізодів

Artwork
iconПоширити
 
Manage episode 444567471 series 3514811
Вміст надано Alloy.ai. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Alloy.ai або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.


In this episode, we dive deep into the complexities of data management within the consumer goods industry, focusing on how brands can achieve a comprehensive view of their business by connecting data across a multitude of retail, e-commerce, and supply chain partners.

Hosted by Abby Carruthers, Product Manager at Alloy.ai, the discussion features insights from Manfred Reiche, a subject matter expert in CPG data, and Matthew Nyhus, engineering team lead at Alloy.ai. Together, they break down challenges and solutions related to data normalization—a crucial process for standardizing data from various sources to ensure consistency and comparability.

From understanding product and location data normalization to tackling the intricacies of time and metric alignment, this episode explores how brands can transform their disparate data into actionable insights that drive sales growth and operational efficiency.

In this episode, you’ll learn about:

  • Data normalization is critical for consumer brands to standardize data from various sources, such as retailers, e-commerce platforms, and supply chain partners, into a common language
  • Integrating and managing data from multiple sources involves significant technical and operational challenges, specialized systems can automatically manage these hurdles
  • Don’t shy away from the complexities of data normalization - seeking help and leveraging the expertise of others can save significant time and resources while ensuring accurate and actionable insights

Jump into the conversation:

(00:00) Introduction to Manfred and Matthew
(06:05) Using multiple retailers, integrate data sources for consumer insights
(09:55) Technology, people, and processes in master data management for product distribution
(14:47) Matching products from different sources for rich information visibility
(19:21) Consistency in managing changing product data
(21:59) Supply chain management with flexible, tailored database design
(25:24) How automation can reduce workload by 95% for all your teams
(29:45) Knowing servicing locations and translating insights for internal teams
(31:38) Distinguishing between brick-and-mortar and e-commerce sales
(34:17) Understanding net sales across channels, including returns and tax
(40:13) Backend stores metric values
(44:02) Retail data analysis pitfalls
(47:17) Being cautious with IT assumptions

  continue reading

Розділи

1. Why Data Normalization Costs Consumer Brands Millions in Sales (00:00:00)

2. Data Normalization in Consumer Goods (00:00:02)

3. Master Data Management Challenges in Sales (00:10:15)

4. Handling Complex Product Matching Scenarios (00:13:43)

5. Standardizing Data Across Multiple Sources (00:26:47)

6. Data Normalization Across Time (00:37:11)

7. Modeling Edge Cases in Data (00:48:08)

15 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити