Artwork

Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

AI Safety and Alignment: Could LLMs Be Penalized for Deepfakes and Misinformation?

8:10
 
Поширити
 

Manage episode 430727965 series 3474148
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/ai-safety-and-alignment-could-llms-be-penalized-for-deepfakes-and-misinformation-ecabdwv.
Penalty-tuning for LLMs: Where they can be penalized for misuses or negative outputs, within their awareness, as another channel for AI safety and alignment.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai-safety, #ai-alignment, #agi, #superintelligence, #llms, #deepfakes, #misinformation, #hackernoon-top-story, and more.
This story was written by: @davidstephen. Learn more about this writer by checking @davidstephen's about page, and for more stories, please visit hackernoon.com.
A research area for AI safety and alignment could be to seek out how some memory or compute access of large language models [LLMs] might be briefly truncated, as a form of penalty for certain outputs or misuses, including biological threats. AI should not just be able to refuse an output, acting within guardrail, but slow the next response or shut down for that user, so that it is not penalized itself. LLMs have—large—language awareness and usage awareness, these could be channels to make it know, after pre-training that it could lose something, if it outputs deepfakes, misinformation, biological threats, or if it continues to allow a misuser try different prompts without shutting down or slowing against openness to a malicious intent. This could make it safer, since it would lose something and will know it has.

  continue reading

316 епізодів

Artwork
iconПоширити
 
Manage episode 430727965 series 3474148
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/ai-safety-and-alignment-could-llms-be-penalized-for-deepfakes-and-misinformation-ecabdwv.
Penalty-tuning for LLMs: Where they can be penalized for misuses or negative outputs, within their awareness, as another channel for AI safety and alignment.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai-safety, #ai-alignment, #agi, #superintelligence, #llms, #deepfakes, #misinformation, #hackernoon-top-story, and more.
This story was written by: @davidstephen. Learn more about this writer by checking @davidstephen's about page, and for more stories, please visit hackernoon.com.
A research area for AI safety and alignment could be to seek out how some memory or compute access of large language models [LLMs] might be briefly truncated, as a form of penalty for certain outputs or misuses, including biological threats. AI should not just be able to refuse an output, acting within guardrail, but slow the next response or shut down for that user, so that it is not penalized itself. LLMs have—large—language awareness and usage awareness, these could be channels to make it know, after pre-training that it could lose something, if it outputs deepfakes, misinformation, biological threats, or if it continues to allow a misuser try different prompts without shutting down or slowing against openness to a malicious intent. This could make it safer, since it would lose something and will know it has.

  continue reading

316 епізодів

모든 에피소드

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити