Artwork

Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Powering AI with the World's Largest Computer Chip with Joel Hestness - #684

55:06
 
Поширити
 

Manage episode 418091008 series 2355587
Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Today we're joined by Joel Hestness, principal research scientist and lead of the core machine learning team at Cerebras. We discuss Cerebras’ custom silicon for machine learning, Wafer Scale Engine 3, and how the latest version of the company’s single-chip platform for ML has evolved to support large language models. Joel shares how WSE3 differs from other AI hardware solutions, such as GPUs, TPUs, and AWS’ Inferentia, and talks through the homogenous design of the WSE chip and its memory architecture. We discuss software support for the platform, including support by open source ML frameworks like Pytorch, and support for different types of transformer-based models. Finally, Joel shares some of the research his team is pursuing to take advantage of the hardware's unique characteristics, including weight-sparse training, optimizers that leverage higher-order statistics, and more.

The complete show notes for this episode can be found at twimlai.com/go/684.

  continue reading

708 епізодів

Artwork
iconПоширити
 
Manage episode 418091008 series 2355587
Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Today we're joined by Joel Hestness, principal research scientist and lead of the core machine learning team at Cerebras. We discuss Cerebras’ custom silicon for machine learning, Wafer Scale Engine 3, and how the latest version of the company’s single-chip platform for ML has evolved to support large language models. Joel shares how WSE3 differs from other AI hardware solutions, such as GPUs, TPUs, and AWS’ Inferentia, and talks through the homogenous design of the WSE chip and its memory architecture. We discuss software support for the platform, including support by open source ML frameworks like Pytorch, and support for different types of transformer-based models. Finally, Joel shares some of the research his team is pursuing to take advantage of the hardware's unique characteristics, including weight-sparse training, optimizers that leverage higher-order statistics, and more.

The complete show notes for this episode can be found at twimlai.com/go/684.

  continue reading

708 епізодів

Tất cả các tập

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник