Artwork

Вміст надано The Quant / Financial Engineering Podcast and Patrick J Zoro. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Quant / Financial Engineering Podcast and Patrick J Zoro або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Reinforcement Learning and Interpretability

34:59
 
Поширити
 

Manage episode 320254265 series 2686124
Вміст надано The Quant / Financial Engineering Podcast and Patrick J Zoro. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Quant / Financial Engineering Podcast and Patrick J Zoro або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

53 епізодів

Artwork
iconПоширити
 
Manage episode 320254265 series 2686124
Вміст надано The Quant / Financial Engineering Podcast and Patrick J Zoro. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Quant / Financial Engineering Podcast and Patrick J Zoro або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

53 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник