Artwork

Вміст надано MLSecOps.com. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією MLSecOps.com або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Privacy Engineering: Safeguarding AI & ML Systems in a Data-Driven Era; With Guest Katharine Jarmul

46:44
 
Поширити
 

Manage episode 371131529 series 3461851
Вміст надано MLSecOps.com. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією MLSecOps.com або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Send us a text

Welcome to The MLSecOps Podcast, where we dive deep into the world of machine learning security operations. In this episode, we talk with the renowned Katharine Jarmul. Katharine is a Principal Data Scientist at Thoughtworks, and the author of the popular new book, Practical Data Privacy.

Katharine also writes a blog titled, Probably Private, where she writes about data privacy, data security, and the intersection of data science and machine learning.

We cover a lot of ground in this conversation; from the more general data privacy and security risks associated with ML models, to more specific cases such as the case with OpenAI’s ChatGPT. We also touch on things like how GDPR and other regulatory frameworks put a spotlight on the privacy concerns we all have when it comes to the massive amount of data collected by models. Where does the data come from? How is it collected? Who gives consent? What if somebody wants to have their data removed?
We also get into how organizations and professionals such as business leaders, data scientists, and ML practitioners can address these challenges when it comes to risks surrounding data, privacy, security, and reputation. We also explore the practices and processes that need to be implemented in order to integrate “Privacy by Design” into the machine learning lifecycle.

Katharine is a wealth of knowledge and insight into these data privacy issues. As always, thanks for listening to the podcast, for reading the transcript, and supporting the show in any way you can.

With that, we hope you enjoy our conversation with Katharine Jarmul.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 епізодів

Artwork
iconПоширити
 
Manage episode 371131529 series 3461851
Вміст надано MLSecOps.com. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією MLSecOps.com або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Send us a text

Welcome to The MLSecOps Podcast, where we dive deep into the world of machine learning security operations. In this episode, we talk with the renowned Katharine Jarmul. Katharine is a Principal Data Scientist at Thoughtworks, and the author of the popular new book, Practical Data Privacy.

Katharine also writes a blog titled, Probably Private, where she writes about data privacy, data security, and the intersection of data science and machine learning.

We cover a lot of ground in this conversation; from the more general data privacy and security risks associated with ML models, to more specific cases such as the case with OpenAI’s ChatGPT. We also touch on things like how GDPR and other regulatory frameworks put a spotlight on the privacy concerns we all have when it comes to the massive amount of data collected by models. Where does the data come from? How is it collected? Who gives consent? What if somebody wants to have their data removed?
We also get into how organizations and professionals such as business leaders, data scientists, and ML practitioners can address these challenges when it comes to risks surrounding data, privacy, security, and reputation. We also explore the practices and processes that need to be implemented in order to integrate “Privacy by Design” into the machine learning lifecycle.

Katharine is a wealth of knowledge and insight into these data privacy issues. As always, thanks for listening to the podcast, for reading the transcript, and supporting the show in any way you can.

With that, we hope you enjoy our conversation with Katharine Jarmul.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

41 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити