Artwork

Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Orchestrating Analytics and AI Workflows at Telia with Arjun Anandkumar

26:00
 
Поширити
 

Manage episode 463948888 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

68 епізодів

Artwork
iconПоширити
 
Manage episode 463948888 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

68 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити