Artwork

Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Inside Modern Data Infrastructure at Massdriver with Cory O’Daniel and Jake Ferriero

31:24
 
Поширити
 

Manage episode 497520222 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 епізодів

Artwork
iconПоширити
 
Manage episode 497520222 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Managing modern data platforms means navigating a web of complex infrastructure, competing team needs and evolving security standards. For data teams to truly thrive, infrastructure must become both accessible and compliant without sacrificing velocity or reliability.

In this episode, we’re joined by Cory O’Daniel, CEO and Co-Founder at Massdriver, and Jacob Ferriero, Senior Software Engineer at Astronomer, to unpack what it takes to make data platform engineering scalable, sustainable and secure. They share lessons from years of experience working with DevOps, ML teams and platform engineers and discuss how Airflow fits into the orchestration layer of today’s data stacks.

Key Takeaways:

(03:27) Making infrastructure accessible without deep ops knowledge.

(07:23) Distinct personas and responsibilities across data teams.

(09:53) Infrastructure hurdles specific to ML workloads.

(11:13) Compliance and governance shaping platform design.

(13:27) Tooling mismatches between teams cause friction.

(15:13) Airflow’s orchestration role within broader system architecture.

(22:10) Creating reusable infrastructure patterns for consistency.

(24:13) Enabling secure access without slowing down development.

(26:55) Opportunities to improve Airflow with event-driven and reliability tooling.

Resources Mentioned:

Cory O’Daniel

https://www.linkedin.com/in/coryodaniel/

Massdriver | LinkedIn

https://www.linkedin.com/company/massdriver/

Massdriver | Website

https://www.massdriver.cloud/

Jacob Ferriero

https://www.linkedin.com/in/jacob-ferriero/

Astronomer

https://www.linkedin.com/company/astronomer/

Apache Airflow

https://airflow.apache.org/

Prequel

https://www.prequel.co/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити