Artwork

Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Embracing Data Mesh and SQL Sensors for Scalable Workflows at lastminute.com with Alberto Crespi

30:09
 
Поширити
 

Manage episode 489814020 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

The flexibility of Airflow plays a pivotal role in enabling decentralized data architectures and empowering cross-functional teams.

In this episode, we speak with Alberto Crespi, Data Architect at lastminute.com, who shares how his team scales Airflow across 12 teams while supporting both vertical and horizontal structures under a data mesh approach.

Key Takeaways:

(02:17) Defining responsibilities within data architecture teams.

(04:15) Consolidating multiple orchestrators into a single solution.

(07:00) Scaling Airflow environments with shared infrastructure and DevOps practices.

(10:59) Managing dependencies and readiness using SQL sensors.

(14:23) Enhancing visibility and response through Slack-integrated monitoring.

(19:28) Extending Airflow’s flexibility to run legacy systems.

(22:28) Integrating transformation tools into orchestrated pipelines.

(25:54) Enabling non-engineers to contribute to pipeline development.

(27:33) Fostering adoption through collaboration and communication.

Resources Mentioned:

Alberto Crespi

https://www.linkedin.com/in/crespialberto/

lastminute.com | Website

https://lastminute.com

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Astronomer Cosmos

https://github.com/astronomer/astronomer-cosmos

GitLabSlack

https://slack.com/

Kubernetes

https://kubernetes.io/

Confluence

https://www.atlassian.com/software/confluence

Slack

https://slack.com/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

64 епізодів

Artwork
iconПоширити
 
Manage episode 489814020 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

The flexibility of Airflow plays a pivotal role in enabling decentralized data architectures and empowering cross-functional teams.

In this episode, we speak with Alberto Crespi, Data Architect at lastminute.com, who shares how his team scales Airflow across 12 teams while supporting both vertical and horizontal structures under a data mesh approach.

Key Takeaways:

(02:17) Defining responsibilities within data architecture teams.

(04:15) Consolidating multiple orchestrators into a single solution.

(07:00) Scaling Airflow environments with shared infrastructure and DevOps practices.

(10:59) Managing dependencies and readiness using SQL sensors.

(14:23) Enhancing visibility and response through Slack-integrated monitoring.

(19:28) Extending Airflow’s flexibility to run legacy systems.

(22:28) Integrating transformation tools into orchestrated pipelines.

(25:54) Enabling non-engineers to contribute to pipeline development.

(27:33) Fostering adoption through collaboration and communication.

Resources Mentioned:

Alberto Crespi

https://www.linkedin.com/in/crespialberto/

lastminute.com | Website

https://lastminute.com

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Astronomer Cosmos

https://github.com/astronomer/astronomer-cosmos

GitLabSlack

https://slack.com/

Kubernetes

https://kubernetes.io/

Confluence

https://www.atlassian.com/software/confluence

Slack

https://slack.com/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

64 епізодів

همه قسمت ها

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити