Artwork

Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Why Developer Experience Shapes Data Pipeline Standards at Next Insurance with Snir Israeli

30:28
 
Поширити
 

Manage episode 481301881 series 2053958
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

77 епізодів

Artwork
iconПоширити
 
Manage episode 481301881 series 2053958
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

77 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити