Artwork

Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

How Uber Manages 1 Million Daily Tasks Using Airflow, with Shobhit Shah and Sumit Maheshwari

28:44
 
Поширити
 

Manage episode 450104898 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 епізодів

Artwork
iconПоширити
 
Manage episode 450104898 series 2948506
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 епізодів

Semua episode

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити