Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
How Laurel Uses Airflow To Enhance Machine Learning Pipelines with Vincent La and Jim Howard
MP3•Головна епізоду
Manage episode 429462923 series 2053958
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
The world of timekeeping for knowledge workers is transforming through the use of AI and machine learning. Understanding how to leverage these technologies is crucial for improving efficiency and productivity. In this episode, we’re joined by Vincent La, Principal Data Scientist at Laurel, and Jim Howard, Principal Machine Learning Engineer at Laurel, to explore the implementation of AI in automating timekeeping and its impact on legal and accounting firms. Key Takeaways: (01:54) Laurel's mission in time automation. (03:39) Solving clustering, prediction and summarization with AI. (06:30) Daily batch jobs for user time generation. (08:22) Knowledge workers touch 300 items daily. (09:01) Mapping 300 activities to seven billable items. (11:38) Retraining models for better performance. (14:00) Using Airflow for retraining and backfills. (17:06) RAG-based summarization for user-specific tone. (18:58) Testing Airflow DAGs for cost-effective summarization. (22:00) Enhancing Airflow for long-running DAGs. Resources Mentioned: Vincent La - https://www.linkedin.com/in/vincentla/ Jim Howard - https://www.linkedin.com/in/jameswhowardml/ Laurel - https://www.linkedin.com/company/laurel-ai/ Apache Airflow - https://airflow.apache.org/ Ernst & Young - https://www.ey.com/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
39 епізодів
How Laurel Uses Airflow To Enhance Machine Learning Pipelines with Vincent La and Jim Howard
The Data Flowcast: Mastering Airflow for Data Engineering & AI
MP3•Головна епізоду
Manage episode 429462923 series 2053958
Вміст надано The Data Flowcast. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією The Data Flowcast або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
The world of timekeeping for knowledge workers is transforming through the use of AI and machine learning. Understanding how to leverage these technologies is crucial for improving efficiency and productivity. In this episode, we’re joined by Vincent La, Principal Data Scientist at Laurel, and Jim Howard, Principal Machine Learning Engineer at Laurel, to explore the implementation of AI in automating timekeeping and its impact on legal and accounting firms. Key Takeaways: (01:54) Laurel's mission in time automation. (03:39) Solving clustering, prediction and summarization with AI. (06:30) Daily batch jobs for user time generation. (08:22) Knowledge workers touch 300 items daily. (09:01) Mapping 300 activities to seven billable items. (11:38) Retraining models for better performance. (14:00) Using Airflow for retraining and backfills. (17:06) RAG-based summarization for user-specific tone. (18:58) Testing Airflow DAGs for cost-effective summarization. (22:00) Enhancing Airflow for long-running DAGs. Resources Mentioned: Vincent La - https://www.linkedin.com/in/vincentla/ Jim Howard - https://www.linkedin.com/in/jameswhowardml/ Laurel - https://www.linkedin.com/company/laurel-ai/ Apache Airflow - https://airflow.apache.org/ Ernst & Young - https://www.ey.com/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
39 епізодів
All episodes
×Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.