Artwork

Вміст надано Altitude Accelerator. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Altitude Accelerator або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Episode 55 Myths, Facts and the Future of LLMs with Amir Feizpour

51:28
 
Поширити
 

Manage episode 422150206 series 3447609
Вміст надано Altitude Accelerator. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Altitude Accelerator або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Large Language Models (LLMs) have emerged as one of the most powerful and versatile artificial intelligence technologies of our time. By training massive neural networks on vast datasets of human-generated text, LLMs have developed an unprecedented ability to understand and generate human-like language with robust fluency and comprehension. This breakthrough has unlocked a wide range of innovative applications across industries, from content creation and language translation to conversational AI assistants and code generation.

More recently Open AI released ChatGPT 4o that they say can reason across different modalities in real time. They trained a single new model end-to-end across text, vision, and audio, meaning that all inputs and outputs are processed by the same neural network. This is still early days but this idea of developing a multi-modal model has vast potential to create much more effective outputs that can help yield better decision making.

The nascency of this technology has yet to be fully understood–language, image, audio understanding, the generation capabilities that can drive substantial productivity gains, and enable new forms of human-machine collaboration and even question which human jobs are replaceable– are still emerging.

As well, LLM technology has limitations and risks including issues of factual inaccuracies, biases inherited from training data, lack of common-sense reasoning, and pervasive potential for misuse, and more recently the data privacy implications that we’ve seen from OpenAI’s unconsented use of Scarlett Johansson’s voice.

Techniques like Retrieval Augmented Generation (RAG) are highlighted as promising approaches to enhance LLMs' knowledge grounding, improve their accuracies over time.

We welcomed Amir Feizpour, CEO and founder of AI.Science, a platform for expert-in-the-loop business workflow automation. In this episode of Tech Uncensored, we will delve into the transformative impacts of LLMs across sectors, the applications both present and future, the current challenges and risks and what does this mean to startups developing in this space.

  continue reading

69 епізодів

Artwork
iconПоширити
 
Manage episode 422150206 series 3447609
Вміст надано Altitude Accelerator. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Altitude Accelerator або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Large Language Models (LLMs) have emerged as one of the most powerful and versatile artificial intelligence technologies of our time. By training massive neural networks on vast datasets of human-generated text, LLMs have developed an unprecedented ability to understand and generate human-like language with robust fluency and comprehension. This breakthrough has unlocked a wide range of innovative applications across industries, from content creation and language translation to conversational AI assistants and code generation.

More recently Open AI released ChatGPT 4o that they say can reason across different modalities in real time. They trained a single new model end-to-end across text, vision, and audio, meaning that all inputs and outputs are processed by the same neural network. This is still early days but this idea of developing a multi-modal model has vast potential to create much more effective outputs that can help yield better decision making.

The nascency of this technology has yet to be fully understood–language, image, audio understanding, the generation capabilities that can drive substantial productivity gains, and enable new forms of human-machine collaboration and even question which human jobs are replaceable– are still emerging.

As well, LLM technology has limitations and risks including issues of factual inaccuracies, biases inherited from training data, lack of common-sense reasoning, and pervasive potential for misuse, and more recently the data privacy implications that we’ve seen from OpenAI’s unconsented use of Scarlett Johansson’s voice.

Techniques like Retrieval Augmented Generation (RAG) are highlighted as promising approaches to enhance LLMs' knowledge grounding, improve their accuracies over time.

We welcomed Amir Feizpour, CEO and founder of AI.Science, a platform for expert-in-the-loop business workflow automation. In this episode of Tech Uncensored, we will delve into the transformative impacts of LLMs across sectors, the applications both present and future, the current challenges and risks and what does this mean to startups developing in this space.

  continue reading

69 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити