Artwork

Вміст надано Kostas Pardalis, Nitay Joffe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Kostas Pardalis, Nitay Joffe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

How Denormalized is Building ‘DuckDB for Streaming’ with Apache DataFusion

1:02:01
 
Поширити
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on September 08, 2025 15:55 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 439643395 series 3594857
Вміст надано Kostas Pardalis, Nitay Joffe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Kostas Pardalis, Nitay Joffe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

In this episode, Kostas and Nitay are joined by Amey Chaugule and Matt Green, co-founders of Denormalized. They delve into how Denormalized is building an embedded stream processing engine—think “DuckDB for streaming”—to simplify real-time data workloads. Drawing from their extensive backgrounds at companies like Uber, Lyft, Stripe, and Coinbase. Amey and Matt discuss the challenges of existing stream processing systems like Spark, Flink, and Kafka. They explain how their approach leverages Apache DataFusion, to create a single-node solution that reduces the complexities inherent in distributed systems.

The conversation explores topics such as developer experience, fault tolerance, state management, and the future of stream processing interfaces. Whether you’re a data engineer, application developer, or simply interested in the evolution of real-time data infrastructure, this episode offers valuable insights into making stream processing more accessible and efficient.


Contacts & Links
Amey Chaugule
Matt Green
Denormalized
Denormalized Github Repo

Chapters
00:00 Introduction and Background
12:03 Building an Embedded Stream Processing Engine
18:39 The Need for Stream Processing in the Current Landscape
22:45 Interfaces for Interacting with Stream Processing Systems
26:58 The Target Persona for Stream Processing Systems
31:23 Simplifying Stream Processing Workloads and State Management
34:50 State and Buffer Management
37:03 Distributed Computing vs. Single-Node Systems
42:28 Cost Savings with Single-Node Systems
47:04 The Power and Extensibility of Data Fusion
55:26 Integrating Data Store with Data Fusion
57:02 The Future of Streaming Systems
01:00:18 intro-outro-fade.mp3

Click here to view the episode transcript.

  continue reading

22 епізодів

Artwork
iconПоширити
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on September 08, 2025 15:55 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 439643395 series 3594857
Вміст надано Kostas Pardalis, Nitay Joffe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Kostas Pardalis, Nitay Joffe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

In this episode, Kostas and Nitay are joined by Amey Chaugule and Matt Green, co-founders of Denormalized. They delve into how Denormalized is building an embedded stream processing engine—think “DuckDB for streaming”—to simplify real-time data workloads. Drawing from their extensive backgrounds at companies like Uber, Lyft, Stripe, and Coinbase. Amey and Matt discuss the challenges of existing stream processing systems like Spark, Flink, and Kafka. They explain how their approach leverages Apache DataFusion, to create a single-node solution that reduces the complexities inherent in distributed systems.

The conversation explores topics such as developer experience, fault tolerance, state management, and the future of stream processing interfaces. Whether you’re a data engineer, application developer, or simply interested in the evolution of real-time data infrastructure, this episode offers valuable insights into making stream processing more accessible and efficient.


Contacts & Links
Amey Chaugule
Matt Green
Denormalized
Denormalized Github Repo

Chapters
00:00 Introduction and Background
12:03 Building an Embedded Stream Processing Engine
18:39 The Need for Stream Processing in the Current Landscape
22:45 Interfaces for Interacting with Stream Processing Systems
26:58 The Target Persona for Stream Processing Systems
31:23 Simplifying Stream Processing Workloads and State Management
34:50 State and Buffer Management
37:03 Distributed Computing vs. Single-Node Systems
42:28 Cost Savings with Single-Node Systems
47:04 The Power and Extensibility of Data Fusion
55:26 Integrating Data Store with Data Fusion
57:02 The Future of Streaming Systems
01:00:18 intro-outro-fade.mp3

Click here to view the episode transcript.

  continue reading

22 епізодів

Tous les épisodes

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити