Artwork

Вміст надано Adam Bien. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Adam Bien або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

From SIMD to CUDA with TornadoVM

45:08
 
Поширити
 

Manage episode 500574464 series 2469611
Вміст надано Adam Bien. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Adam Bien або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
An airhacks.fm conversation with Michalis Papadimitriou (@mikepapadim) about:
GPU acceleration for LLMs in Java using tornadovm, evolution from CPU-bound SIMD optimizations to GPU memory management, Alfonso's original Java port of llama.cpp using SIMD and Panama Vector API achieving 10 tokens per second, TornadoVM's initial hybrid approach combining CPU vector operations with GPU matrix multiplications, memory-bound nature of LLM inference versus compute-bound traditional workloads, introduction of persist and consume API to keep data on GPU between operations, reduction of host-GPU data transfers for improved performance, comparison with native CUDA implementations and optimization strategies, JIT compilation of kernels versus static optimization in frameworks like tensorrt, using LLMs like Claude to optimize GPU kernels, building MCP servers for automated kernel optimization, European Space Agency using TornadoVM in production for simulations, upcoming Metal backend support for Apple Silicon within 6-7 months, planned support for additional models including Mistral and gemma, potential for distributed inference across multiple GPUs, comparison with python and C++ implementations achieving near-native performance, modular architecture supporting OpenCL PTX and future hardware accelerators, challenges of new GPU hardware vendors like tenstorrent focusing on software ecosystem, planned quarkus and langchain4j integration demonstrations

Michalis Papadimitriou on twitter: @mikepapadim

  continue reading

364 епізодів

Artwork
iconПоширити
 
Manage episode 500574464 series 2469611
Вміст надано Adam Bien. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Adam Bien або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
An airhacks.fm conversation with Michalis Papadimitriou (@mikepapadim) about:
GPU acceleration for LLMs in Java using tornadovm, evolution from CPU-bound SIMD optimizations to GPU memory management, Alfonso's original Java port of llama.cpp using SIMD and Panama Vector API achieving 10 tokens per second, TornadoVM's initial hybrid approach combining CPU vector operations with GPU matrix multiplications, memory-bound nature of LLM inference versus compute-bound traditional workloads, introduction of persist and consume API to keep data on GPU between operations, reduction of host-GPU data transfers for improved performance, comparison with native CUDA implementations and optimization strategies, JIT compilation of kernels versus static optimization in frameworks like tensorrt, using LLMs like Claude to optimize GPU kernels, building MCP servers for automated kernel optimization, European Space Agency using TornadoVM in production for simulations, upcoming Metal backend support for Apple Silicon within 6-7 months, planned support for additional models including Mistral and gemma, potential for distributed inference across multiple GPUs, comparison with python and C++ implementations achieving near-native performance, modular architecture supporting OpenCL PTX and future hardware accelerators, challenges of new GPU hardware vendors like tenstorrent focusing on software ecosystem, planned quarkus and langchain4j integration demonstrations

Michalis Papadimitriou on twitter: @mikepapadim

  continue reading

364 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити