Artwork

Вміст надано mstraton8112. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією mstraton8112 або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

AI & LLM Models: Unlocking Artificial Intelligence's Inner 'Thought' Through Reinforcement Learning EP 48

17:41
 
Поширити
 

Manage episode 490310464 series 3658923
Вміст надано mstraton8112. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією mstraton8112 або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

AI & LLM Models: Unlocking Artificial Intelligence's Inner 'Thought' Through Reinforcement Learning – A Deep Dive into How Model-Free Mechanisms Drive Deliberative Processes in Contemporary Artificial Intelligence Systems and Beyond

This expansive exploration delves into the cutting-edge intersection of artificial intelligence (AI) and the sophisticated internal mechanisms observed in advanced systems, particularly Large Language Models (LLM Models). Recent breakthroughs have strikingly demonstrated that even model-free reinforcement learning (RL), a paradigm traditionally associated with direct reward-seeking behaviors, can foster the emergence of "thinking-like" capabilities. This fascinating phenomenon sees AI agents engaging in internal "thought actions" that, paradoxically, do not yield immediate rewards or directly modify the external environment state. Instead, these internal processes serve a strategic, future-oriented purpose: they subtly manipulate the agent's internal thought state to guide it towards subsequent environment actions that promise greater cumulative rewards. The theoretical underpinning for this behavior is formalized through the "thought Markov decision process" (thought MDP), which extends classical MDPs to include abstract notions of thought states and actions. Within this framework, the research rigorously proves that the initial configuration of an agent's policy, known as "policy initialization," is a critical determinant in whether this internal deliberation will emerge as a valuable strategy. Importantly, these thought actions can be interpreted as the artificial intelligence agent choosing to perform a step of policy improvement internally before resuming external interaction, akin to System 2 processing (slow, effortful, potentially more precise) in human cognition, contrasting with the fast, reflexive System 1 behavior often associated with model-free learning. The paper provides compelling evidence that contemporary LLM Models, especially when prompted for step-by-step reasoning (like Chain-of-Thought prompting), instantiate these very conditions necessary for model-free reinforcement learning to cultivate "thinking" behavior. Empirical data, such as the increased accuracy observed in various LLM Models when forced to engage in pre-computation or partial sum calculations, directly supports the hypothesis that these internal "thought tokens" improve the expected return from a given state, priming these artificial intelligence systems for emergent thinking. Beyond language, the research hypothesizes that a combination of multi-task pre-training and the ability to internally manipulate one's own state are key ingredients for thinking to emerge in diverse domains, a concept validated in a non-language-based gridworld environment where a "Pretrained-Think" agent significantly outperformed others. This profound insight into how sophisticated internal deliberation can arise from reward maximization in artificial intelligence systems opens exciting avenues for designing future AI agents that learn not just to act, but to strategically think.

  continue reading

57 епізодів

Artwork
iconПоширити
 
Manage episode 490310464 series 3658923
Вміст надано mstraton8112. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією mstraton8112 або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

AI & LLM Models: Unlocking Artificial Intelligence's Inner 'Thought' Through Reinforcement Learning – A Deep Dive into How Model-Free Mechanisms Drive Deliberative Processes in Contemporary Artificial Intelligence Systems and Beyond

This expansive exploration delves into the cutting-edge intersection of artificial intelligence (AI) and the sophisticated internal mechanisms observed in advanced systems, particularly Large Language Models (LLM Models). Recent breakthroughs have strikingly demonstrated that even model-free reinforcement learning (RL), a paradigm traditionally associated with direct reward-seeking behaviors, can foster the emergence of "thinking-like" capabilities. This fascinating phenomenon sees AI agents engaging in internal "thought actions" that, paradoxically, do not yield immediate rewards or directly modify the external environment state. Instead, these internal processes serve a strategic, future-oriented purpose: they subtly manipulate the agent's internal thought state to guide it towards subsequent environment actions that promise greater cumulative rewards. The theoretical underpinning for this behavior is formalized through the "thought Markov decision process" (thought MDP), which extends classical MDPs to include abstract notions of thought states and actions. Within this framework, the research rigorously proves that the initial configuration of an agent's policy, known as "policy initialization," is a critical determinant in whether this internal deliberation will emerge as a valuable strategy. Importantly, these thought actions can be interpreted as the artificial intelligence agent choosing to perform a step of policy improvement internally before resuming external interaction, akin to System 2 processing (slow, effortful, potentially more precise) in human cognition, contrasting with the fast, reflexive System 1 behavior often associated with model-free learning. The paper provides compelling evidence that contemporary LLM Models, especially when prompted for step-by-step reasoning (like Chain-of-Thought prompting), instantiate these very conditions necessary for model-free reinforcement learning to cultivate "thinking" behavior. Empirical data, such as the increased accuracy observed in various LLM Models when forced to engage in pre-computation or partial sum calculations, directly supports the hypothesis that these internal "thought tokens" improve the expected return from a given state, priming these artificial intelligence systems for emergent thinking. Beyond language, the research hypothesizes that a combination of multi-task pre-training and the ability to internally manipulate one's own state are key ingredients for thinking to emerge in diverse domains, a concept validated in a non-language-based gridworld environment where a "Pretrained-Think" agent significantly outperformed others. This profound insight into how sophisticated internal deliberation can arise from reward maximization in artificial intelligence systems opens exciting avenues for designing future AI agents that learn not just to act, but to strategically think.

  continue reading

57 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити