Artwork

Вміст надано Marcel Kurovski. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Marcel Kurovski або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

#22: Pinterest Homefeed and Ads Ranking with Prabhat Agarwal and Aayush Mudgal

1:24:07
 
Поширити
 

Manage episode 422219847 series 3288795
Вміст надано Marcel Kurovski. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Marcel Kurovski або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

In episode 22 of Recsperts, we welcome Prabhat Agarwal, Senior ML Engineer, and Aayush Mudgal, Staff ML Engineer, both from Pinterest, to the show. Prabhat works on recommendations and search systems at Pinterest, leading representation learning efforts. Aayush is responsible for ads ranking and privacy-aware conversion modeling. We discuss user and content modeling, short- vs. long-term objectives, evaluation as well as multi-task learning and touch on counterfactual evaluation as well.

In our interview, Prabhat guides us through the journey of continuous improvements of Pinterest's Homefeed personalization starting with techniques such as gradient boosting over two-tower models to DCN and transformers. We discuss how to capture users' short- and long-term preferences through multiple embeddings and the role of candidate generators for content diversification. Prabhat shares some details about position debiasing and the challenges to facilitate exploration.
With Aayush we get the chance to dive into the specifics of ads ranking at Pinterest and he helps us to better understand how multifaceted ads can be. We learn more about the pain of having too many models and the Pinterest's efforts to consolidate the model landscape to improve infrastructural costs, maintainability, and efficiency. Aayush also shares some insights about exploration and corresponding randomization in the context of ads and how user behavior is very different between different kinds of ads.
Both guests highlight the role of counterfactual evaluation and its impact for faster experimentation.

Towards the end of the episode, we also touch a bit on learnings from last year's RecSys challenge.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:51) - Guest Introductions
  • (09:57) - Pinterest Introduction
  • (21:57) - Homefeed Personalization
  • (47:27) - Ads Ranking
  • (01:14:58) - RecSys Challenge 2023
  • (01:20:26) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 епізодів

Artwork
iconПоширити
 
Manage episode 422219847 series 3288795
Вміст надано Marcel Kurovski. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Marcel Kurovski або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

In episode 22 of Recsperts, we welcome Prabhat Agarwal, Senior ML Engineer, and Aayush Mudgal, Staff ML Engineer, both from Pinterest, to the show. Prabhat works on recommendations and search systems at Pinterest, leading representation learning efforts. Aayush is responsible for ads ranking and privacy-aware conversion modeling. We discuss user and content modeling, short- vs. long-term objectives, evaluation as well as multi-task learning and touch on counterfactual evaluation as well.

In our interview, Prabhat guides us through the journey of continuous improvements of Pinterest's Homefeed personalization starting with techniques such as gradient boosting over two-tower models to DCN and transformers. We discuss how to capture users' short- and long-term preferences through multiple embeddings and the role of candidate generators for content diversification. Prabhat shares some details about position debiasing and the challenges to facilitate exploration.
With Aayush we get the chance to dive into the specifics of ads ranking at Pinterest and he helps us to better understand how multifaceted ads can be. We learn more about the pain of having too many models and the Pinterest's efforts to consolidate the model landscape to improve infrastructural costs, maintainability, and efficiency. Aayush also shares some insights about exploration and corresponding randomization in the context of ads and how user behavior is very different between different kinds of ads.
Both guests highlight the role of counterfactual evaluation and its impact for faster experimentation.

Towards the end of the episode, we also touch a bit on learnings from last year's RecSys challenge.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:51) - Guest Introductions
  • (09:57) - Pinterest Introduction
  • (21:57) - Homefeed Personalization
  • (47:27) - Ads Ranking
  • (01:14:58) - RecSys Challenge 2023
  • (01:20:26) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити