Artwork

Вміст надано Денис, Ігор, Саша. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Денис, Ігор, Саша або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

№42: Рекомендаційні системи, ч.2. Будуємо моделі, зворотній зв'язок, а як схочемо, то і ChatGPT підключимо

1:22:13
 
Поширити
 

Manage episode 365302267 series 3361795
Вміст надано Денис, Ігор, Саша. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Денис, Ігор, Саша або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

В гостях ⁠Дмитро Войтех⁠, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠

  • 00:00 - 00:56 – Intro
  • 00:57 - 02:50 – з чого почати побудову recommender system; як будувати baseline моделі
  • 02:51 - 04:10 – говоримо про бейзлайн систему рекомендації для зображень
  • 04:11 - 7:30 – говоримо про бейзлайн систему рекомендації для текстових даних; Bag of Words; BM-25
  • 7:31 - 11:15 – які хороші методи для отримування вектора ознак для тексту? TF-IDF
  • 11:16 - 14:47 – проблема холодного старту (Cold Start)
  • 14:48 - 20:10 – моделі рекомендацій на основі механізму зворотнього зв’язку; кенселінг за дієвидло; колаборативна фільтрація – @benfred/implicit, улюблена Alternating Least Squares у каглерів
  • 20:11 - 22:06 – знову говоримо про cold start; маленький кейс megogo
  • 22:07 - 30:25 – Word2Vec, чи то пак Entity2Vec — як оригінальний NLP алгоритм можна використовував для побудови рекомендацій
  • 30:26 - 33:20 – векторна арифметика на елементах вашої системи — як віднімати та додавати зображення та тексти один від/до одного; фантазуємо, які пошукові системи потрібні людям; слухайте подкаст з Олесем Петрівом, де космічні кораблі подорожують просторами ембедінгів
  • 33:21 - 36:53 – рекомендації на базі графових нейронних мереж (GNN); чому це можна розглядати як логічне продовження моделей на базі Word2Vec; кейс AliBaba;
  • 36:54 - 39:45 – чим графові нейронні мережі схожі на конволюційні; 3b1b про конволюції
  • 39:46 - 45:50 – як використовувати Mixture of Experts моделі в рекомендаціях; пейпер Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer; згадуємо symbolic AI та експретні системи
  • 45:51 - 51:56 – рекомендаційні системи на основні архітектури нейронних мереж Трансформер; паралелі з Deep & Wide model; слідкуйте за https://eugeneyan.com/
  • 51:57 - 1:01:46 – алгоритми Learning to Rank (навчання ранжуванню) — побороли recall, починаємо бороти precision; поточкові, попарні та помножинні підходи; RankNet; LambdaMart
  • 1:01:47 - 1:06:19 – рекомендації на базі моделі CLIP - Contrastive Language–Image Pre-training; як тюнити CLIP
  • 1:06:20 - 1:07:28 – знову фантазуємо про просунуті пошукові інтерфейси; reverse image search
  • 1:07:29 - 1:11:40 – як використовувати LLM для рекомендацій? Забудьте про ембеддінги – несемо prompt engineering в маси!
  • 1:11:41 - 1:17:18 – крейзі ідеї в світі LLM – ChatGPT розкаже вам, як спати та бігати, враховуючи дані з вашого Apple Watch; як LLM обробляє великі дані через маленьке контекстне вікно
  • 1:17:19 - 1:22:13 – Підбиваємо підсумки; перераховуємо теми в галузі рекомендаційних систем, про які ми НЕ поговорили, але які варто подосліджувати. Коли повернеться подкаст?

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 епізодів

Artwork
iconПоширити
 
Manage episode 365302267 series 3361795
Вміст надано Денис, Ігор, Саша. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Денис, Ігор, Саша або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

В гостях ⁠Дмитро Войтех⁠, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠⁠

  • 00:00 - 00:56 – Intro
  • 00:57 - 02:50 – з чого почати побудову recommender system; як будувати baseline моделі
  • 02:51 - 04:10 – говоримо про бейзлайн систему рекомендації для зображень
  • 04:11 - 7:30 – говоримо про бейзлайн систему рекомендації для текстових даних; Bag of Words; BM-25
  • 7:31 - 11:15 – які хороші методи для отримування вектора ознак для тексту? TF-IDF
  • 11:16 - 14:47 – проблема холодного старту (Cold Start)
  • 14:48 - 20:10 – моделі рекомендацій на основі механізму зворотнього зв’язку; кенселінг за дієвидло; колаборативна фільтрація – @benfred/implicit, улюблена Alternating Least Squares у каглерів
  • 20:11 - 22:06 – знову говоримо про cold start; маленький кейс megogo
  • 22:07 - 30:25 – Word2Vec, чи то пак Entity2Vec — як оригінальний NLP алгоритм можна використовував для побудови рекомендацій
  • 30:26 - 33:20 – векторна арифметика на елементах вашої системи — як віднімати та додавати зображення та тексти один від/до одного; фантазуємо, які пошукові системи потрібні людям; слухайте подкаст з Олесем Петрівом, де космічні кораблі подорожують просторами ембедінгів
  • 33:21 - 36:53 – рекомендації на базі графових нейронних мереж (GNN); чому це можна розглядати як логічне продовження моделей на базі Word2Vec; кейс AliBaba;
  • 36:54 - 39:45 – чим графові нейронні мережі схожі на конволюційні; 3b1b про конволюції
  • 39:46 - 45:50 – як використовувати Mixture of Experts моделі в рекомендаціях; пейпер Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer; згадуємо symbolic AI та експретні системи
  • 45:51 - 51:56 – рекомендаційні системи на основні архітектури нейронних мереж Трансформер; паралелі з Deep & Wide model; слідкуйте за https://eugeneyan.com/
  • 51:57 - 1:01:46 – алгоритми Learning to Rank (навчання ранжуванню) — побороли recall, починаємо бороти precision; поточкові, попарні та помножинні підходи; RankNet; LambdaMart
  • 1:01:47 - 1:06:19 – рекомендації на базі моделі CLIP - Contrastive Language–Image Pre-training; як тюнити CLIP
  • 1:06:20 - 1:07:28 – знову фантазуємо про просунуті пошукові інтерфейси; reverse image search
  • 1:07:29 - 1:11:40 – як використовувати LLM для рекомендацій? Забудьте про ембеддінги – несемо prompt engineering в маси!
  • 1:11:41 - 1:17:18 – крейзі ідеї в світі LLM – ChatGPT розкаже вам, як спати та бігати, враховуючи дані з вашого Apple Watch; як LLM обробляє великі дані через маленьке контекстне вікно
  • 1:17:19 - 1:22:13 – Підбиваємо підсумки; перераховуємо теми в галузі рекомендаційних систем, про які ми НЕ поговорили, але які варто подосліджувати. Коли повернеться подкаст?

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити