Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
Вміст надано NLP Highlights and Allen Institute for Artificial Intelligence. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією NLP Highlights and Allen Institute for Artificial Intelligence або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
107 - Multi-Modal Transformers, with Hao Tan and Mohit Bansal
MP3•Головна епізоду
Manage episode 254400458 series 1452120
Вміст надано NLP Highlights and Allen Institute for Artificial Intelligence. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією NLP Highlights and Allen Institute for Artificial Intelligence або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
…
continue reading
145 епізодів
MP3•Головна епізоду
Manage episode 254400458 series 1452120
Вміст надано NLP Highlights and Allen Institute for Artificial Intelligence. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією NLP Highlights and Allen Institute for Artificial Intelligence або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
…
continue reading
145 епізодів
Semua episode
×Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.