Artwork

Вміст надано Demetrios. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Demetrios або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

LinkedIn Recommender System Predictive ML vs LLMs

47:39
 
Поширити
 

Manage episode 499820399 series 3241972
Вміст надано Demetrios. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Demetrios або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Demetrios chats with Arpita Vats about how LLMs are shaking up recommender systems. Instead of relying on hand-crafted features and rigid user clusters, LLMs can read between the lines—spotting patterns in user behavior and content like a human would. They cover the perks (less manual setup, smarter insights) and the pain points (latency, high costs), plus how mixing models might be the sweet spot. From timing content perfectly to knowing when traditional methods still win, this episode pulls back the curtain on the future of recommendations.

// Bio

Arpita Vats is a passionate and accomplished researcher in the field of Artificial Intelligence, with a focus on Natural Language Processing, Recommender Systems, and Multimodal AI. With a strong academic foundation and hands-on experience at leading tech companies such as LinkedIn, Meta, and Staples, Arpita has contributed to cutting-edge projects spanning large language models (LLMs), privacy-aware AI, and video content understanding.

She has published impactful research at premier venues and actively serves as a reviewer for top-tier conferences like CVPR, ICLR, and KDD. Arpita’s work bridges academic innovation with industry-scale deployment, making her a sought-after collaborator in the AI research community.

Currently, she is engaged in exploring the alignment and safety of language models, developing robust metrics like the Alignment Quality Index (AQI), and optimizing model behavior across diverse input domains. Her dedication to advancing ethical and scalable AI reflects both in her academic pursuits and professional contributions.

// Related Links

#recommendersystems #LLMs #linkedin

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Arpita on LinkedIn: /arpita-v-0a14a422/

Timestamps:

[00:00] Smarter Content Recommendations

[05:19] LLMs: Next-Gen Recommendations

[09:37] Judging LLM Suggestions

[11:38] Old vs New Recommenders

[14:11] Why LLMs Get Stuck

[16:52] When Old Models Win

[22:39] After-Booking Rec Magic

[23:26] One LLM to Rule Models

[29:14] Personalization That Evolves

[32:39] SIM Beats Transformers in QA

[35:35] Agents Writing Research Papers

[37:12] Big-Company Agent Failures

[41:47] LinkedIn Posts Fade Faster

[46:04] Clustering Shifts Social Feeds

[47:01] Vanishing Posts, Replay Mode

  continue reading

468 епізодів

Artwork
iconПоширити
 
Manage episode 499820399 series 3241972
Вміст надано Demetrios. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Demetrios або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Demetrios chats with Arpita Vats about how LLMs are shaking up recommender systems. Instead of relying on hand-crafted features and rigid user clusters, LLMs can read between the lines—spotting patterns in user behavior and content like a human would. They cover the perks (less manual setup, smarter insights) and the pain points (latency, high costs), plus how mixing models might be the sweet spot. From timing content perfectly to knowing when traditional methods still win, this episode pulls back the curtain on the future of recommendations.

// Bio

Arpita Vats is a passionate and accomplished researcher in the field of Artificial Intelligence, with a focus on Natural Language Processing, Recommender Systems, and Multimodal AI. With a strong academic foundation and hands-on experience at leading tech companies such as LinkedIn, Meta, and Staples, Arpita has contributed to cutting-edge projects spanning large language models (LLMs), privacy-aware AI, and video content understanding.

She has published impactful research at premier venues and actively serves as a reviewer for top-tier conferences like CVPR, ICLR, and KDD. Arpita’s work bridges academic innovation with industry-scale deployment, making her a sought-after collaborator in the AI research community.

Currently, she is engaged in exploring the alignment and safety of language models, developing robust metrics like the Alignment Quality Index (AQI), and optimizing model behavior across diverse input domains. Her dedication to advancing ethical and scalable AI reflects both in her academic pursuits and professional contributions.

// Related Links

#recommendersystems #LLMs #linkedin

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Arpita on LinkedIn: /arpita-v-0a14a422/

Timestamps:

[00:00] Smarter Content Recommendations

[05:19] LLMs: Next-Gen Recommendations

[09:37] Judging LLM Suggestions

[11:38] Old vs New Recommenders

[14:11] Why LLMs Get Stuck

[16:52] When Old Models Win

[22:39] After-Booking Rec Magic

[23:26] One LLM to Rule Models

[29:14] Personalization That Evolves

[32:39] SIM Beats Transformers in QA

[35:35] Agents Writing Research Papers

[37:12] Big-Company Agent Failures

[41:47] LinkedIn Posts Fade Faster

[46:04] Clustering Shifts Social Feeds

[47:01] Vanishing Posts, Replay Mode

  continue reading

468 епізодів

Tất cả các tập

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити