Artwork

Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

The Illusion of Scale: Why LLMs Are Vulnerable to Data Poisoning, Regardless of Size

7:31
 
Поширити
 

Manage episode 514593878 series 3474148
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-illusion-of-scale-why-llms-are-vulnerable-to-data-poisoning-regardless-of-size.
New research shatters AI security assumptions, showing that poisoning large models is easier than believed and requires a very small number of documents.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #adversarial-machine-learning, #ai-safety, #generative-ai, #llm-security, #data-poisoning, #backdoor-attacks, #enterprise-ai-security, #hackernoon-top-story, and more.
This story was written by: @hacker-Antho. Learn more about this writer by checking @hacker-Antho's about page, and for more stories, please visit hackernoon.com.
The research challenges the conventional wisdom that an attacker needs to control a specific percentage of the training data (e.g., 0.1% or 0.27%) to succeed. For the largest model tested (13B parameters), those 250 poisoned samples represented a minuscule 0.00016% of the total training tokens. Attack success rate remained nearly identical across all tested model scales for a fixed number of poisoned documents.

  continue reading

425 епізодів

Artwork
iconПоширити
 
Manage episode 514593878 series 3474148
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-illusion-of-scale-why-llms-are-vulnerable-to-data-poisoning-regardless-of-size.
New research shatters AI security assumptions, showing that poisoning large models is easier than believed and requires a very small number of documents.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #adversarial-machine-learning, #ai-safety, #generative-ai, #llm-security, #data-poisoning, #backdoor-attacks, #enterprise-ai-security, #hackernoon-top-story, and more.
This story was written by: @hacker-Antho. Learn more about this writer by checking @hacker-Antho's about page, and for more stories, please visit hackernoon.com.
The research challenges the conventional wisdom that an attacker needs to control a specific percentage of the training data (e.g., 0.1% or 0.27%) to succeed. For the largest model tested (13B parameters), those 250 poisoned samples represented a minuscule 0.00016% of the total training tokens. Attack success rate remained nearly identical across all tested model scales for a fixed number of poisoned documents.

  continue reading

425 епізодів

Alle episoder

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити