Переходьте в офлайн за допомогою програми Player FM !
Simplifying Transformer Blocks without Sacrificing Efficiency
Manage episode 424423082 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/simplifying-transformer-blocks-without-sacrificing-efficiency.
Learn how simplified transformer blocks achieve 15% faster training throughput without compromising performance in deep learning models.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #transformer-architecture, #simplified-transformer-blocks, #neural-network-efficiency, #deep-transformers, #signal-propagation-theory, #neural-network-architecture, #hackernoon-top-story, and more.
This story was written by: @autoencoder. Learn more about this writer by checking @autoencoder's about page, and for more stories, please visit hackernoon.com.
This study simplifies transformer blocks by removing non-essential components, resulting in 15% faster training throughput and 15% fewer parameters while maintaining performance.
316 епізодів
Manage episode 424423082 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/simplifying-transformer-blocks-without-sacrificing-efficiency.
Learn how simplified transformer blocks achieve 15% faster training throughput without compromising performance in deep learning models.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #transformer-architecture, #simplified-transformer-blocks, #neural-network-efficiency, #deep-transformers, #signal-propagation-theory, #neural-network-architecture, #hackernoon-top-story, and more.
This story was written by: @autoencoder. Learn more about this writer by checking @autoencoder's about page, and for more stories, please visit hackernoon.com.
This study simplifies transformer blocks by removing non-essential components, resulting in 15% faster training throughput and 15% fewer parameters while maintaining performance.
316 епізодів
Усі епізоди
×Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.