Artwork

Вміст надано Matt Arnold. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Matt Arnold або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Classifying Images: Massive Parallelism And Surface Features

15:05
 
Поширити
 

Manage episode 459403197 series 2862172
Вміст надано Matt Arnold. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Matt Arnold або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Analysis of image classifiers demonstrates that it is possible to understand backprop networks at the task-relevant run-time algorithmic level. In these systems, at least, networks gain their power from deploying massive parallelism to check for the presence of a vast number of simple, shallow patterns.

https://betterwithout.ai/images-surface-features

This episode has a lot of links:

David Chapman's earliest public mention, in February 2016, of image classifiers probably using color and texture in ways that "cheat": twitter.com/Meaningness/status/698688687341572096

Jordana Cepelewicz’s “Where we see shapes, AI sees textures,” Quanta Magazine, July 1, 2019: https://www.quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701/

“Suddenly, a leopard print sofa appears”, May 2015: https://web.archive.org/web/20150622084852/http://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html

“Understanding How Image Quality Affects Deep Neural Networks” April 2016: https://arxiv.org/abs/1604.04004 Goodfellow et al., “Explaining and Harnessing Adversarial Examples,” December 2014: https://arxiv.org/abs/1412.6572

“Universal adversarial perturbations,” October 2016: https://arxiv.org/pdf/1610.08401v1.pdf

“Exploring the Landscape of Spatial Robustness,” December 2017: https://arxiv.org/abs/1712.02779

“Overinterpretation reveals image classification model pathologies,” NeurIPS 2021: https://proceedings.neurips.cc/paper/2021/file/8217bb4e7fa0541e0f5e04fea764ab91-Paper.pdf

“Approximating CNNs with Bag-of-Local-Features Models Works Surprisingly Well on ImageNet,” ICLR 2019: https://openreview.net/forum?id=SkfMWhAqYQ

Baker et al.’s “Deep convolutional networks do not classify based on global object shape,” PLOS Computational Biology, 2018: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006613

François Chollet's Twitter threads about AI producing images of horses with extra legs: twitter.com/fchollet/status/1573836241875120128 and twitter.com/fchollet/status/1573843774803161090

“Zoom In: An Introduction to Circuits,” 2020: https://distill.pub/2020/circuits/zoom-in/

Geirhos et al., “ImageNet-Trained CNNs Are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness,” ICLR 2019: https://openreview.net/forum?id=Bygh9j09KX

Dehghani et al., “Scaling Vision Transformers to 22 Billion Parameters,” 2023: https://arxiv.org/abs/2302.05442

Hasson et al., “Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks,” February 2020: https://www.gwern.net/docs/ai/scaling/2020-hasson.pdf

You can support the podcast and get episodes a week early, by supporting the Patreon: https://www.patreon.com/m/fluidityaudiobooks If you like the show, consider buying me a coffee: https://www.buymeacoffee.com/mattarnold Original music by Kevin MacLeod. This podcast is under a Creative Commons Attribution Non-Commercial International 4.0 License.
  continue reading

155 епізодів

Artwork
iconПоширити
 
Manage episode 459403197 series 2862172
Вміст надано Matt Arnold. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Matt Arnold або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Analysis of image classifiers demonstrates that it is possible to understand backprop networks at the task-relevant run-time algorithmic level. In these systems, at least, networks gain their power from deploying massive parallelism to check for the presence of a vast number of simple, shallow patterns.

https://betterwithout.ai/images-surface-features

This episode has a lot of links:

David Chapman's earliest public mention, in February 2016, of image classifiers probably using color and texture in ways that "cheat": twitter.com/Meaningness/status/698688687341572096

Jordana Cepelewicz’s “Where we see shapes, AI sees textures,” Quanta Magazine, July 1, 2019: https://www.quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701/

“Suddenly, a leopard print sofa appears”, May 2015: https://web.archive.org/web/20150622084852/http://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html

“Understanding How Image Quality Affects Deep Neural Networks” April 2016: https://arxiv.org/abs/1604.04004 Goodfellow et al., “Explaining and Harnessing Adversarial Examples,” December 2014: https://arxiv.org/abs/1412.6572

“Universal adversarial perturbations,” October 2016: https://arxiv.org/pdf/1610.08401v1.pdf

“Exploring the Landscape of Spatial Robustness,” December 2017: https://arxiv.org/abs/1712.02779

“Overinterpretation reveals image classification model pathologies,” NeurIPS 2021: https://proceedings.neurips.cc/paper/2021/file/8217bb4e7fa0541e0f5e04fea764ab91-Paper.pdf

“Approximating CNNs with Bag-of-Local-Features Models Works Surprisingly Well on ImageNet,” ICLR 2019: https://openreview.net/forum?id=SkfMWhAqYQ

Baker et al.’s “Deep convolutional networks do not classify based on global object shape,” PLOS Computational Biology, 2018: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006613

François Chollet's Twitter threads about AI producing images of horses with extra legs: twitter.com/fchollet/status/1573836241875120128 and twitter.com/fchollet/status/1573843774803161090

“Zoom In: An Introduction to Circuits,” 2020: https://distill.pub/2020/circuits/zoom-in/

Geirhos et al., “ImageNet-Trained CNNs Are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness,” ICLR 2019: https://openreview.net/forum?id=Bygh9j09KX

Dehghani et al., “Scaling Vision Transformers to 22 Billion Parameters,” 2023: https://arxiv.org/abs/2302.05442

Hasson et al., “Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks,” February 2020: https://www.gwern.net/docs/ai/scaling/2020-hasson.pdf

You can support the podcast and get episodes a week early, by supporting the Patreon: https://www.patreon.com/m/fluidityaudiobooks If you like the show, consider buying me a coffee: https://www.buymeacoffee.com/mattarnold Original music by Kevin MacLeod. This podcast is under a Creative Commons Attribution Non-Commercial International 4.0 License.
  continue reading

155 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити