Artwork

Вміст надано EDGE AI FOUNDATION. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією EDGE AI FOUNDATION або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Pioneering Personalized Medicine with Advanced AI Algorithms

1:06:10
 
Поширити
 

Manage episode 418589472 series 3574631
Вміст надано EDGE AI FOUNDATION. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією EDGE AI FOUNDATION або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Send us a text

Unlock the transformative potential of AI in healthcare with Jim Wang and Steve Yu from the University of Sydney and listen to their revelatory insights on TinyML Network models in medical devices. Our latest episode is a treasure trove of innovation, where machine learning meets wearable technology to redefine patient care. From the pressing need for low latency in critical health monitoring to the intricacies of biosensor evolution and data privacy, this conversation maps out the future of medical diagnostics and the promise of personalized treatments.
Imagine a world where your medical device knows you better than you know yourself. That's the future Jim and Steve unveil as we scrutinize the optimization of machine learning algorithms for edge devices, balancing the scales between performance and power constraints. We explore the regulatory hurdles and breakthroughs in model tailoring, ensuring that your health is monitored with meticulous precision. Our discussion also peels back the layers on the importance of public datasets and hospital partnerships in enhancing the accuracy and responsiveness of life-saving technology.
Stepping into the realm of neuromorphic computing, we navigate the promising landscape of on-device training and model compactness. With an eye on patient privacy, we delve into the adaptability of models like the S4D and NCP, overcoming the challenges of limited data and simplifying complex architectures. Jim and Steve's research opens up a dialogue on the future of medical devices, where health monitoring is not just personalized but also proactive, ensuring that the care you receive is as unique as your heartbeat. Join us for an enlightening journey into the heart of healthcare innovation where edge computing is not just smart—it's genius.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Розділи

1. TinyMail Network in Medical Devices (00:00:00)

2. Wearable Device Latency and ML Implementation (00:12:46)

3. Improving Model Generalizability for Medical Devices (00:19:54)

4. Neural Network Models for Biosignals (00:30:37)

5. Neuromorphic Models and on-Device Training (00:48:56)

22 епізодів

Artwork
iconПоширити
 
Manage episode 418589472 series 3574631
Вміст надано EDGE AI FOUNDATION. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією EDGE AI FOUNDATION або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Send us a text

Unlock the transformative potential of AI in healthcare with Jim Wang and Steve Yu from the University of Sydney and listen to their revelatory insights on TinyML Network models in medical devices. Our latest episode is a treasure trove of innovation, where machine learning meets wearable technology to redefine patient care. From the pressing need for low latency in critical health monitoring to the intricacies of biosensor evolution and data privacy, this conversation maps out the future of medical diagnostics and the promise of personalized treatments.
Imagine a world where your medical device knows you better than you know yourself. That's the future Jim and Steve unveil as we scrutinize the optimization of machine learning algorithms for edge devices, balancing the scales between performance and power constraints. We explore the regulatory hurdles and breakthroughs in model tailoring, ensuring that your health is monitored with meticulous precision. Our discussion also peels back the layers on the importance of public datasets and hospital partnerships in enhancing the accuracy and responsiveness of life-saving technology.
Stepping into the realm of neuromorphic computing, we navigate the promising landscape of on-device training and model compactness. With an eye on patient privacy, we delve into the adaptability of models like the S4D and NCP, overcoming the challenges of limited data and simplifying complex architectures. Jim and Steve's research opens up a dialogue on the future of medical devices, where health monitoring is not just personalized but also proactive, ensuring that the care you receive is as unique as your heartbeat. Join us for an enlightening journey into the heart of healthcare innovation where edge computing is not just smart—it's genius.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Розділи

1. TinyMail Network in Medical Devices (00:00:00)

2. Wearable Device Latency and ML Implementation (00:12:46)

3. Improving Model Generalizability for Medical Devices (00:19:54)

4. Neural Network Models for Biosignals (00:30:37)

5. Neuromorphic Models and on-Device Training (00:48:56)

22 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити