Artwork

Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Here's How ShareChat Scaled Their ML Feature Store 1000X Without Scaling the Database

12:42
 
Поширити
 

Manage episode 508413559 series 3474670
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

137 епізодів

Artwork
iconПоширити
 
Manage episode 508413559 series 3474670
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

137 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити