

When? This feed was archived on February 10, 2025 12:10 (
Why? Канал неактуальний status. Нашим серверам не вдалося отримати доступ до каналу подкасту протягом тривалого періоду часу.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Episode Summary: In this episode, Eugene Uwiragiye dives deep into the concepts of decision trees, discussing how they are implemented in Python and their application in data science. This technical walkthrough provides a step-by-step demonstration of building and visualizing decision trees, discussing important techniques such as loading data from different file formats (CSV, JSON), handling missing data, and using functions like map(), apply(), and lambda() to manipulate data frames efficiently.
Key Takeaways:
Tools & Libraries Mentioned:
Memorable Quotes:
Resources for Further Learning:
Episode Links:
20 епізодів
When?
This feed was archived on February 10, 2025 12:10 (
Why? Канал неактуальний status. Нашим серверам не вдалося отримати доступ до каналу подкасту протягом тривалого періоду часу.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Episode Summary: In this episode, Eugene Uwiragiye dives deep into the concepts of decision trees, discussing how they are implemented in Python and their application in data science. This technical walkthrough provides a step-by-step demonstration of building and visualizing decision trees, discussing important techniques such as loading data from different file formats (CSV, JSON), handling missing data, and using functions like map(), apply(), and lambda() to manipulate data frames efficiently.
Key Takeaways:
Tools & Libraries Mentioned:
Memorable Quotes:
Resources for Further Learning:
Episode Links:
20 епізодів
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.