Artwork

Вміст надано CCC media team. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією CCC media team або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Anonymization of sensitive information in financial documents (sps25)

31:17
 
Поширити
 

Manage episode 514760093 series 1910928
Вміст надано CCC media team. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією CCC media team або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Data is the fossil fuel of the machine learning world, essential for developing high quality models but in limited supply. Yet institutions handling sensitive documents — such as financial, medical, or legal records often cannot fully leverage their own data due to stringent privacy, compliance, and security requirements, making training high quality models difficult. A promising solution is to replace the personally identifiable information (PII) with realistic synthetic stand-ins, whilst leaving the rest of the document in tact. In this talk, we will discuss the use of open source tools and models that can be self hosted to anonymize documents. We will go over the various approaches for Named Entity Recognition (NER) to identify sensitive entities and the use of diffusion models to inpaint anonymized content. about this event: https://talks.python-summit.ch/sps25/talk/EWMBRM/
  continue reading

1736 епізодів

Artwork
iconПоширити
 
Manage episode 514760093 series 1910928
Вміст надано CCC media team. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією CCC media team або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Data is the fossil fuel of the machine learning world, essential for developing high quality models but in limited supply. Yet institutions handling sensitive documents — such as financial, medical, or legal records often cannot fully leverage their own data due to stringent privacy, compliance, and security requirements, making training high quality models difficult. A promising solution is to replace the personally identifiable information (PII) with realistic synthetic stand-ins, whilst leaving the rest of the document in tact. In this talk, we will discuss the use of open source tools and models that can be self hosted to anonymize documents. We will go over the various approaches for Named Entity Recognition (NER) to identify sensitive entities and the use of diffusion models to inpaint anonymized content. about this event: https://talks.python-summit.ch/sps25/talk/EWMBRM/
  continue reading

1736 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити