Artwork

Вміст надано BlueDot Impact. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією BlueDot Impact або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Empirical Findings Generalize Surprisingly Far

11:32
 
Поширити
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (20d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424744779 series 3498845
Вміст надано BlueDot Impact. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією BlueDot Impact або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Previously, I argued that emergent phenomena in machine learning mean that we can’t rely on current trends to predict what the future of ML will be like. In this post, I will argue that despite this, empirical findings often do generalize very far, including across “phase transitions” caused by emergent behavior.

This might seem like a contradiction, but actually I think divergence from current trends and empirical generalization are consistent. Findings do often generalize, but you need to think to determine the right generalization, and also about what might stop any given generalization from holding.

I don’t think many people would contest the claim that empirical investigation can uncover deep and generalizable truths. This is one of the big lessons of physics, and while some might attribute physics’ success to math instead of empiricism, I think it’s clear that you need empirical data to point to the right mathematics.

However, just invoking physics isn’t a good argument, because physical laws have fundamental symmetries that we shouldn’t expect in machine learning. Moreover, we care specifically about findings that continue to hold up after some sort of emergent behavior (such as few-shot learning in the case of ML). So, to make my case, I’ll start by considering examples in deep learning that have held up in this way. Since “modern” deep learning hasn’t been around that long, I’ll also look at examples from biology, a field that has been around for a relatively long time and where More Is Different is ubiquitous (see Appendix: More Is Different In Other Domains).

Source:

https://bounded-regret.ghost.io/empirical-findings-generalize-surprisingly-far/

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Розділи

1. Empirical Findings Generalize Surprisingly Far (00:00:00)

2. Empirical Generalization in Deep Learning (00:01:46)

3. How This Relates to Human-Aligned AI (00:05:20)

4. Empirical Generalization in Biology (00:07:47)

5. What About Superintelligence? (00:10:10)

85 епізодів

Artwork
iconПоширити
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (20d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424744779 series 3498845
Вміст надано BlueDot Impact. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією BlueDot Impact або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Previously, I argued that emergent phenomena in machine learning mean that we can’t rely on current trends to predict what the future of ML will be like. In this post, I will argue that despite this, empirical findings often do generalize very far, including across “phase transitions” caused by emergent behavior.

This might seem like a contradiction, but actually I think divergence from current trends and empirical generalization are consistent. Findings do often generalize, but you need to think to determine the right generalization, and also about what might stop any given generalization from holding.

I don’t think many people would contest the claim that empirical investigation can uncover deep and generalizable truths. This is one of the big lessons of physics, and while some might attribute physics’ success to math instead of empiricism, I think it’s clear that you need empirical data to point to the right mathematics.

However, just invoking physics isn’t a good argument, because physical laws have fundamental symmetries that we shouldn’t expect in machine learning. Moreover, we care specifically about findings that continue to hold up after some sort of emergent behavior (such as few-shot learning in the case of ML). So, to make my case, I’ll start by considering examples in deep learning that have held up in this way. Since “modern” deep learning hasn’t been around that long, I’ll also look at examples from biology, a field that has been around for a relatively long time and where More Is Different is ubiquitous (see Appendix: More Is Different In Other Domains).

Source:

https://bounded-regret.ghost.io/empirical-findings-generalize-surprisingly-far/

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Розділи

1. Empirical Findings Generalize Surprisingly Far (00:00:00)

2. Empirical Generalization in Deep Learning (00:01:46)

3. How This Relates to Human-Aligned AI (00:05:20)

4. Empirical Generalization in Biology (00:07:47)

5. What About Superintelligence? (00:10:10)

85 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити