331. Innovación en urgencias, predicción de recaídas mediante aprendizaje automático interpretable
Manage episode 455884244 series 3274405
En este episodio de "Concienciados", comparto junto a Juan José Hernández Morante, investigador de la UCAM, los detalles de una investigación que busca transformar la gestión sanitaria a través de la inteligencia artificial. Hablamos sobre un sistema predictivo que hemos desarrollado en la UCAM y que permite anticipar, con un 95% de precisión, la probabilidad de que un paciente dado de alta en urgencias vuelva a ingresar en un plazo de 30 días.
La motivación del proyecto surge de un problema recurrente en los servicios sanitarios: los reingresos hospitalarios. Saber quién tiene más probabilidades de volver a urgencias nos permite intervenir de manera más eficiente, optimizando recursos y mejorando la atención al paciente. Para desarrollar esta herramienta, partimos de los datos clínicos del Hospital Virgen de la Arrixaca, que nos proporcionaron una base sólida con más de 20.000 registros. A partir de ahí, aplicamos metodologías avanzadas de "machine learning", desarrollando modelos que no solo predicen resultados, sino que además explican por qué. Esto es clave, ya que permite entender las variables que más influyen en las recaídas y cuestionar paradigmas que, hasta ahora, se daban por sentados.
Por ejemplo, uno de los hallazgos más llamativos es que una estancia hospitalaria prolongada, lejos de ser beneficiosa, aumenta las probabilidades de reingreso. Este dato rompe con la idea tradicional de que "más tiempo en el hospital" equivale a "mejor recuperación". Además, encontramos diferencias demográficas interesantes: los hombres tienen más probabilidades de recaída que las mujeres, y ciertos códigos postales muestran patrones significativos que podrían relacionarse con factores sociales o económicos.
Durante la conversación, insistimos en que estas herramientas no son magia. La inteligencia artificial no hace milagros, pero puede aportar mucho valor si se aplican correctamente. Por eso, uno de los grandes retos es que los profesionales de la salud conozcan y confíen en estas tecnologías. La rápida evolución de la IA y la cantidad de datos que se generan en los hospitales requieren un esfuerzo conjunto para que estas herramientas se integren de forma efectiva en el sistema sanitario.
El objetivo final de este proyecto no es solo reducir los reingresos hospitalarios, sino también mejorar la calidad de vida de los pacientes. Menos tiempo en el hospital significa más tiempo en casa, donde el paciente puede recuperarse mejor con un seguimiento adecuado. En el futuro, esperamos aplicar esta misma metodología a otros contextos dentro del ámbito de la salud, explorando nuevas bases de datos y extendiendo el impacto de esta tecnología.
Este episodio es una producción de iradio UCAM, con la colaboración de la Unidad de Cultura Científica e Innovación y el Vicerrectorado de Investigación de la UCAM. Agradecemos a todos los que han hecho posible este trabajo y, especialmente, a quienes nos escuchan y comparten nuestro interés por la investigación y la tecnología aplicada a la salud.
Aquí la publicacion relacionada:
https://www.mdpi.com/2504-4990/6/3/80
Además, te invitamos a unirte a nuestra comunidad gratuita en WhatsApp:
https://chat.whatsapp.com/BIfSH9QFEiK9hiS83fw2am
donde podrás interactuar con otros investigadores y compartir tus opiniones sobre el tema de este episodio. Nos encantaría saber qué piensas y recibir tus comentarios para seguir mejorando.
Gracias por escuchar y nos vemos en el próximo episodio.
326 епізодів