Player FM - Internet Radio Done Right
Checked 1+ y ago
Додано four роки тому
Вміст надано William Monroe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією William Monroe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
Подкасти, які варто послухати
РЕКЛАМА
On the Season 2 debut of Lost Cultures: Living Legacies , we travel to Bermuda, an Atlantic island whose history spans centuries and continents. Once uninhabited, Bermuda became a vital stop in transatlantic trade, a maritime stronghold, and a cultural crossroads shaped by African, European, Caribbean, and Native American influences. Guests Dr. Kristy Warren and Dr. Edward Harris trace its transformation from an uninhabited island to a strategic outpost shaped by shipwrecks, colonization, the transatlantic slave trade, and the rise and fall of empires. Plus, former Director of Tourism Gary Phillips shares the story of the Gombey tradition, a vibrant performance art rooted in resistance, migration, and cultural fusion. Together, they reveal how Bermuda’s layered past continues to shape its people, culture, and identity today. You can also find us online at travelandleisure.com/lostcultures Learn more about your ad choices. Visit podcastchoices.com/adchoices…
UAB's Data Science Club
Відзначити всі (не)відтворені ...
Manage series 3232219
Вміст надано William Monroe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією William Monroe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
The Data Science Club is hosted by Ravi Tripathi and William Monroe from University of Alabama at Birmingham. Every episode we hop in to a different data science application, using freely available code that you can also run on your own.
…
continue reading
8 епізодів
Відзначити всі (не)відтворені ...
Manage series 3232219
Вміст надано William Monroe. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією William Monroe або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
The Data Science Club is hosted by Ravi Tripathi and William Monroe from University of Alabama at Birmingham. Every episode we hop in to a different data science application, using freely available code that you can also run on your own.
…
continue reading
8 епізодів
Усі епізоди
×U
UAB's Data Science Club

1 Machine Learning Interpretability with Patrick Hall 1:11:53
1:11:53
Відтворити Пізніше
Відтворити Пізніше
Списки
Подобається
Подобається1:11:53
This episode of the UAB Data Science Club, we are interviewing Patrick Hall. He has written the book on Machine Learning Interpretability, and is the Senior Director of Product at https://www.h2o.ai/. Patrick guides us through a Disparate Impact Analysis, and we discuss AI security, fairness, and Asimov’s rules of robotics. This is the notebook we looked at with Patrick Hall https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/dia.ipynb Patrick Hall’s Machine Learning Interpretability Book https://www.h2o.ai/oreilly-mli-booklet-2019/ Warning Signs: The Future of Privacy and Security in an Age of Machine Learning https://fpf.org/wp-content/uploads/2019/09/FPF-Indecent-Exposure-Report-Final-digital.pdf Fairness, Accountability, and Transparency in Machine Learning https://www.fatml.org/ IBM AI Fairness 360 Toolkit http://aif360.mybluemix.net/ AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models https://arxiv.org/abs/1909.09251…
This week we are looking at the first 3 notebooks in the kaggle data visualization track: https://www.kaggle.com/learn/data-visualization Visualization is super important to the data scientist, since these are the tools we must use to communicate findings and tell stories with the data we are analyzing.…
Today, Ravi and I cover two more feature extraction techniques, Locally Linear Embedding (LLE) and t-distributed Stochastic Neighbor Embedding (T-SNE). We are building on the notebook we started in video #23, so check that one out if you haven't already. https://towardsdatascience.com/feature-extraction-techniques-d619b56e31be…
In this video, Ravi and I go over some basic feature extraction and dimensionality reduction techniques. Here is the tutorial we used. https://towardsdatascience.com/feature-extraction-techniques-d619b56e31be Next week we will do the second half of this article.
Today, Ravi and I are using Python and the keras library to explore training convolutional neural networks with starting, stopping, and resuming training. We are going through https://www.pyimagesearch.com/2019/09/23/keras-starting-stopping-and-resuming-training/?utm_source=facebook&utm_medium=ad-23-09-2019&utm_campaign=23+September+2019+BP+-+Traffic&utm_content=Default+name+-+Traffic&fbid_campaign=6122406376646&fbid_adset=6122407684846&utm_adset=23+September+2019+BP+-+Email+List+-+United+States+-+18%2B&fbid_ad=6122407685046 We will be using the environment we created in the first Data Science Club video: https://youtu.be/Ew6kAP_6PBI, so if you haven't already, do that one first! Please Like and Subscribe if you would like to get these videos as we release them. Feel free to ask any questions here or in office hours…
U
UAB's Data Science Club

1 UAB Data Science Club #21: My First Generative Adversarial Network 1:03:30
1:03:30
Відтворити Пізніше
Відтворити Пізніше
Списки
Подобається
Подобається1:03:30
Today, Ravi and I are using Python and the keras library to explore generative Adversarial networks. This was a head scratcher for sure. Since it was the first time we had played around with generative adversarial networks there were a number of hard concepts we waddled through. We are going through https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/ Jason Brownlee (the author of the post) has a whole book on using GANs, so check that out too if you are interested. We will be using the environment we created in the first Data Science Club video, so if you haven't already, do that one first! Please Like and Subscribe if you would like to get these videos as we release them. Feel free to ask any questions here or in office hours…
Today, Ravi and William are using Python and the keras library to explore convolutional neural networks for image classification. We are going through https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py We will be using the environment we created in the first Data Science Club video, so if you haven't already, do that one first! Please Like and Subscribe if you would like to get these videos as we release them. Feel free to ask any questions here or in office hours…
Hey Y'all, This is just some synths we through together for some bumper music at the beginning of the episode while we wait for streaming to get going :).
Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.