Player FM - Internet Radio Done Right
17 subscribers
Checked 2M ago
Додано five роки тому
Вміст надано Aaron Stump. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Aaron Stump або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
Iowa Type Theory Commute
Відзначити всі (не)відтворені ...
Manage series 2823367
Вміст надано Aaron Stump. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Aaron Stump або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Aaron Stump talks about type theory, computational logic, and related topics in Computer Science on his short commute.
…
continue reading
175 епізодів
Відзначити всі (не)відтворені ...
Manage series 2823367
Вміст надано Aaron Stump. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Aaron Stump або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Aaron Stump talks about type theory, computational logic, and related topics in Computer Science on his short commute.
…
continue reading
175 епізодів
Усі епізоди
×I correct what I said in the last episode about the author of the proof of FD from last episode based on intersection types. I also describe AI flopping when I ask it a question about this.
Krivine's book (Section 4.2) has a proof of the Finite Developments Theorem, based on intersection types. I discuss this proof in this episode.
I discuss the paper "A Direct Proof of the Finite Developments Theorem" , by Roel de Vrijer. See also the write-up at my blog.
The finite developments theorem in pure lambda calculus says that if you select as set of redexes in a lambda term and reduce only those and their residuals (redexes that can be traced back as existing in the original set), then this process will always terminate. In this episode, I discuss the theorem and why I got interested in it.…
In this episode, I discuss the paper Nominal Techniques in Isabelle/HOL , by Christian Urban. This paper shows how to reason with terms modulo alpha-equivalence, using ideas from nominal logic. The basic idea is that instead of renamings, one works with permutations of names.
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means. Feel free to email me any time at aaron.stump@bc.edu, or join the Telegram group for the podcast.…
I discuss the paper POPLmark Reloaded: Mechanizing Proofs by Logical Relations , which proposes a benchmark problem for mechanizing Programming Language theory.
I continue the discussion of POPLmark Reloaded , discussing the solutions proposed to the benchmark problem. The solutions are in the Beluga, Coq (recently renamed Rocq), and Agda provers.
In this episode, I begin discussing the question and history of formalizing results in Programming Languages Theory using interactive theorem provers like Rocq (formerly Coq) and Agda.
In this episode, I describe the first proof of normalization for STLC, written by Alan Turing in the 1940s. See this short note for Turing's original proof and some historical comments.
In this episode, after a quick review of the preceding couple, I discuss the property of normalization for STLC, and talk a bit about proof methods. We will look at proofs in more detail in the coming episodes. Feel free to join the Telegram group for the podcast if you want to discuss anything (or just email me at aaron.stump@gmail.com).…
It is maybe not so well known that arithmetic operations -- at least some of them -- can be implemented in simply typed lambda calculus (STLC). Church-encoded numbers can be given the simple type (A -> A) -> A -> A, for any simple type A. If we abbreviate that type as Nat_A, then addition and multiplication can both be typed in STLC, at type Nat_A -> Nat_A -> Nat_A. Interestingly, things change with exponentiation, which we will consider in the next episode.…
Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating consequence that we cannot define self-exponentiation, \ x . exp x x. That term would reduce to \ x . x x, which is provably not typable in STLC.…
I review the typing rules and some basic examples for STLC. I also remind listeners of the Curry-Howard isomorphism for STLC.
In this episode, after a pretty long hiatus, I start a new chapter on simply typed lambda calculus. I present the typing rules and give some basic examples. Subsequent episodes will discuss various interesting nuances...
Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.