Player FM - Internet Radio Done Right
Checked 1+ y ago
Додано five роки тому
Вміст надано Lucas Dixon and People + AI Research. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Lucas Dixon and People + AI Research або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
Подкасти, які варто послухати
РЕКЛАМА
Many of us are entering the new year with a similar goal — to build community and connect more with others. To kick off season five, Priya Parker shares ideas on how to be the host with the most. An expert on building connection, Priya is the author of “The Art of Gathering: How We Meet and Why It Matters.” Whether it's a book club, wedding, birthday or niche-and-obscurely themed party, Priya and Chris talk about how to create meaningful and fun experiences for all of your guests — including yourself. For the full text transcript, visit go.ted.com/BHTranscripts . For the full text transcript, visit go.ted.com/BHTranscripts Want to help shape TED’s shows going forward? Fill out our survey here ! Learn more about TED Next at ted.com/futureyou Hosted on Acast. See acast.com/privacy for more information.…
Tic-Tac-Toe the Hard Way
Відзначити всі (не)відтворені ...
Manage series 2770146
Вміст надано Lucas Dixon and People + AI Research. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Lucas Dixon and People + AI Research або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
A writer and a software engineer from Google's People + AI Research team explore the human choices that shape machine learning systems by building competing tic-tac-toe agents.
…
continue reading
10 епізодів
Відзначити всі (не)відтворені ...
Manage series 2770146
Вміст надано Lucas Dixon and People + AI Research. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією Lucas Dixon and People + AI Research або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
A writer and a software engineer from Google's People + AI Research team explore the human choices that shape machine learning systems by building competing tic-tac-toe agents.
…
continue reading
10 епізодів
Wszystkie odcinki
×What have we learned about machine learning and the human decisions that shape it? And is machine learning perhaps changing our minds about how the world outside of machine learning — also known as the world — works? For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
Yannick and David’s systems play against each other in 500 games. Who’s going to win? And what can we learn about how the ML may be working by thinking about the results? See the agents play each other in Tic-Tac-Two ! For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
David’s variant of tic-tac-toe that we’re calling tic-tac-two is only slightly different but turns out to be far more complex. This requires rethinking what the ML system will need in order to learn how to play, and how to represent that data. For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
David and Yannick’s tic-tac-toe ML agents face-off against each other in tic-tac-toe! See the agents play each other ! For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .
Switching gears, we focus on how Yannick’s been training his model using reinforcement learning. He explains the differences from David’s supervised learning approach. We find out how his system performs against a player that makes random tic-tac-toe moves. Resources: Deep Learning for JavaScript book Playing Atari with Deep Reinforcement Learning Two Minute Papers episode on Atari DQN For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
David did it! He trained a machine learning model to play tic-tac-toe! (Well, with lots of help from Yannick.) How did the whole training experience go? How do you tell how training went? How did his model do against a player that makes random tic-tac-toe moves? For more information about the show, check out pair.withgoogle.com/thehardway/ . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
Once we have the data we need—thousands of sample games--how do we turn it into something the ML can train itself on? That means understanding how training works, and what a model is. Resources: See a definition of one-hot encoding For more information about the show, check out pair.withgoogle.com/thehardway . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
How should David represent the data needed to train his machine learning system? What does a tic-tac-toe board “look” like to ML? Should he train it on games or on individual boards? How does this decision affect how and how well the machine will learn to play? Plus, an intro to reinforcement learning, the approach Yannick will be taking. For more information about the show, check out pair.withgoogle.com/thehardway . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
Welcome to the podcast! We’re Yannick and David, a software engineer and a non-technical writer. Over the next 9 episodes we’re going to use two different approaches to build machine learning systems that play two versions of tic-tac-toe. Building a machine learning app requires humans making a lot of decisions. We start by agreeing that David will use a “supervised learning” approach while Yannick will go with “reinforcement learning.” For more information about the show, check out pair.withgoogle.com/thehardway . You can reach out to the hosts on Twitter: @dweinberger and @tafsiri .…
Introducing the podcast where a writer and a software engineer explore the human choices that shape machine learning systems by building competing tic-tac-toe agents. Brought to you by Google's People + AI Research team. More at: pair.withgoogle.com/thehardway
Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.