Artwork

Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Controlling Fusion Reactor Instability with Deep Reinforcement Learning with Aza Jalalvand - #682

42:09
 
Поширити
 

Manage episode 415333239 series 2355587
Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production.

The complete show notes for this episode can be found at twimlai.com/go/682.

  continue reading

707 епізодів

Artwork
iconПоширити
 
Manage episode 415333239 series 2355587
Вміст надано TWIML and Sam Charrington. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією TWIML and Sam Charrington або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production.

The complete show notes for this episode can be found at twimlai.com/go/682.

  continue reading

707 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник