Artwork

Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Microsoft’s SAMBA Model Redefines Long-Context Learning for AI

10:40
 
Поширити
 

Manage episode 516345909 series 3474385
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/microsofts-samba-model-redefines-long-context-learning-for-ai.
SAMBA combines attention and Mamba for linear-time modeling and context recall for millions of tokens.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #microsoft-ai, #linear-time-complexity, #state-space-models, #mamba-hybrid-model, #language-model-scaling, #efficient-llm-design, #long-context-learning-ai, #hackernoon-top-story, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
SAMBA is a hybrid neural architecture that effectively processes very long sequences by combining Sliding Window Attention (SWA) with Mamba, a state space model (SSM). SAMBA achieves speed and memory efficiency by fusing the exact recall capabilities of attention with the linear-time recurrent dynamics of Mamba. SAMBA surpasses Transformers and pure SSMs on important benchmarks like MMLU and GSM8K after being trained on 3.2 trillion tokens with up to 3.8 billion parameters.

  continue reading

361 епізодів

Artwork
iconПоширити
 
Manage episode 516345909 series 3474385
Вміст надано HackerNoon. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією HackerNoon або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/microsofts-samba-model-redefines-long-context-learning-for-ai.
SAMBA combines attention and Mamba for linear-time modeling and context recall for millions of tokens.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #microsoft-ai, #linear-time-complexity, #state-space-models, #mamba-hybrid-model, #language-model-scaling, #efficient-llm-design, #long-context-learning-ai, #hackernoon-top-story, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
SAMBA is a hybrid neural architecture that effectively processes very long sequences by combining Sliding Window Attention (SWA) with Mamba, a state space model (SSM). SAMBA achieves speed and memory efficiency by fusing the exact recall capabilities of attention with the linear-time recurrent dynamics of Mamba. SAMBA surpasses Transformers and pure SSMs on important benchmarks like MMLU and GSM8K after being trained on 3.2 trillion tokens with up to 3.8 billion parameters.

  continue reading

361 епізодів

Усі епізоди

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник

Слухайте це шоу, досліджуючи
Відтворити