Artwork

Вміст надано multimidiavillage. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією multimidiavillage або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !

Células solares mais eficientes.

2:38
 
Поширити
 

Manage episode 313125808 series 3259842
Вміст надано multimidiavillage. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією multimidiavillage або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

161 епізодів

Artwork
iconПоширити
 
Manage episode 313125808 series 3259842
Вміст надано multimidiavillage. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією multimidiavillage або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

161 епізодів

All episodes

×
 
Loading …

Ласкаво просимо до Player FM!

Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.

 

Короткий довідник