The award-winning WIRED UK Podcast with James Temperton and the rest of the team. Listen every week for the an informed and entertaining rundown of latest technology, science, business and culture news. New episodes every Friday.
…
continue reading
Вміст надано LessWrong. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією LessWrong або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
Player FM - додаток Podcast
Переходьте в офлайн за допомогою програми Player FM !
Переходьте в офлайн за допомогою програми Player FM !
“How Well Does RL Scale?” by Toby_Ord
MP3•Головна епізоду
Manage episode 516788581 series 3364760
Вміст надано LessWrong. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією LessWrong або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
This is the latest in a series of essays on AI Scaling.
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
…
continue reading
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
- Scaling the amount of compute used for RL during training
- Scaling [...]
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
664 епізодів
MP3•Головна епізоду
Manage episode 516788581 series 3364760
Вміст надано LessWrong. Весь вміст подкастів, включаючи епізоди, графіку та описи подкастів, завантажується та надається безпосередньо компанією LessWrong або його партнером по платформі подкастів. Якщо ви вважаєте, що хтось використовує ваш захищений авторським правом твір без вашого дозволу, ви можете виконати процедуру, описану тут https://uk.player.fm/legal.
This is the latest in a series of essays on AI Scaling.
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
…
continue reading
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
- Scaling the amount of compute used for RL during training
- Scaling [...]
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
664 епізодів
All episodes
×Ласкаво просимо до Player FM!
Player FM сканує Інтернет для отримання високоякісних подкастів, щоб ви могли насолоджуватися ними зараз. Це найкращий додаток для подкастів, який працює на Android, iPhone і веб-сторінці. Реєстрація для синхронізації підписок між пристроями.